

Energy Materials Challenges

Theory and computation for Interface Science and Catalysis

Cynthia Friend Harvard University

Integrated collaboration between theory and experiment

Energy outlook for 2040

- 2 billion more people
- 130% larger global economy
- ~35% increase in demand for energy or more than 100% increase without efficiency gain
- 90% growth in demand for electricity

Many materials and processing challenges for energy research

 Heterogeneous catalysis Thermal processing Direct use Photochemical Processing Photovoltaic materials: Organic & Inorganic Electrochemical processes - Fuel cells Energy storage 0, + 2H,Storage Electrochemical chemical synthesis Use on demand Energy Ou

Overall goal: Design of materials with specific functionality—requires compositional and structural control

Key points to consider in modeling of energy-related problems

- Set up simplified models and use experimental information as a guide
- Add complexity to test for importance
 - Surface reconstruction or metal atom release
 - Compositional variation in, e.g. oxides or sulfides
- Molecular systems require inclusion of weak (van der Waal's) interactions
- Kinetic modeling important for many processes
- Photon-driven processes require treatment of excited states and time-dependent models

Examples of experimental benchmarks

- Spectroscopy
 - X-ray tools (e.g. XPS, XAS, XES, EDS)
 - Vibrational spectroscopy (IR, Raman, HREELS)
- Imaging
 - STM/AFM; TEM, SEM
- Structural probes (averaging)
 - Diffraction; Scattering, e.g. EXAFS
- Reactivity measurements/Rate measurements

Enhancing Energy Efficiency: The Power of Fundamental Studies

Fundamental need: To design new, efficient catalytic processes based on understanding of bonding and reactivity.

Thermal Catalysis: Modification of kinetics via introducing intermediate steps

- Increase rate
- Lower

 operating
 temperature
 (save
 energy)

Photo-catalysis: Modification of kinetics by accessing excited state

Increase rate

Drives
 reactions,
 even uphill
 reactions,
 using light

Bridging materials' complexity and pressure

Well-defined conditions yield molecular level understanding and bridge to theory

Multiscale modeling of selective oxidation of organics by gold: Single crystals and nanoporous materials

Key insights from fundamental studies:

- Catalytic performance at 1 atm. predicted from fundamental surface chemistry
- Mechanistic framework used to predict new reactions
- Understanding hierarchy of bond strengths that determine coverage in complex reactive environments
- Catalyst activation: Metastable surface structures are key to activity and selectivity

Critical reactive step: $O_2 \rightarrow 2 O_{ads}$

Metallic Au does not dissociate O₂ efficiently

Our approach:

- 1.Study O/Au by using other sources of O_{ads}
- 2.Investigate materials with minority active component for O₂ dissociation, e.g Ag; migration (spillover) to Au leads to reaction

Oxide supports are also a source of O_{ads}

Critical reactive step: $O_2 \rightarrow 2 O_{ads}$

Metallic Au does not dissociate O₂ efficiently

Our approach:

1.Study O/Au by using other sources of O_{ads}

Metastable nanostructures have high reactivity & high selectivity

Local Bonding of O depends on Coverage: HREELS & DFT

Molecular Dynamics with DFT: understand local bonding of O species at higher coverage

Chemisorbed O 380 cm⁻¹ peak

2-D "oxide" 380 & 560 cm⁻¹ peaks

Subsurface "oxide" 380 & 560 cm⁻¹ peaks

Low T, Low θ_{O} Most reactive towards CO

High T, High θ_{O}

Baker, Xu, Liu, Kaxiras, & Friend, J. Phys. Chem. C., 2009, 113, 16561-16564.

Xu, B., Liu, X., Haubrich, J., Madix, R. & Friend, C. Angew. Chem., Int. Ed. 48, 4206-4209 (2009).

DFT: Attack of H₂C=O by CH₃O is spontaneous—no barrier

Adsorbed O facilitates last β -H elimination step; low barrier for transfer to Au (0.22 eV)

Xu, HaubrichBaker, Kaxiras, Friend, JPCC (2011) 115 3703-3708

Key Insights

- Loss of H from CH₃O determines rate adsorbed O, OH and CH₃O all can promote formaldehyde formation
- Au itself is unreactive, so O_{ads} determines reactivity
- Weak binding of key reactants, e.g.
 H₂C=O, OH, & H₂O, facilitates migration
 and rearrangement to preferred reaction
 geometry for coupling—key aspect of Au
 reactivity

High selectivity is important in reduction in energy cost using catalysis

Increase selectivity

 get the product you
 want with little or no
 waste

Example: Methanol oxidation on Ag or Au

$$CH_3O-C(H)=O + 2 H_2O$$

Its all about kinetics!

$$3 CH_3OH + O_a H_2C=O + H_2O$$

$$CO_2 + 2 H_2O$$

Formaldehyde Oxidation: Pathway for combustion/Reservoir of Formaldehyde

Principles governing Selectivity for methanol coupling

- "oxide" is less reactive
- secondary
 oxidation is fast
 relative to
 primary step
- Selectivity is low

O/Au(111) models reaction mechanism

Metallic Gold does not activate dioxygen. O₂

Key challenge: delivering O to the surface

Metallic Silver activates O₂ at low temperatures by forming a peroxide-like species

Nanoporous Au Materials: Dilute Ag/Au alloys

Dilute Ag/Au alloys dissociate O₂— even in UHV

Nanoporous Au/UHV

2O_{ads}→O_{2g} used to measure O uptake

Isotopic labelling

Unpublished results

Methanol oxidation on NP Au

As predicted: esterification dominates at low O₂ partial pressures; no detectable H₂C=O

As predicted:
Selectivity=ester:CO₂
decreases with T and O₂
partial pressure

Science, **2010**, 327, 319-322

Possible role of theory: guiding principle for designing new reactions

Electron distribution leads to reaction of negatively polarized species with positively charged one

Prediction: Any molecule with electron-deficient carbon should react with OCH₃ on O/Au

Surface Chemistry as a platform for reaction discovery—new processes

Methanol carbonylation

Xu, Madix, Friend, JACS(2011); dx.doi.org/10.1021/ja207389z

Tailoring coupling of higher alcohols: Illustrating importance of weak interactions

What controls selectivity for the different possible coupling pathways?

Xu, Friend, Madix, Chemical Sciences (2010) 1, 310-314, DOI: 10.1039/C0SC00214C.

Higher Alcohols: Displacement & β-H elimination are key factors

Relative surface coverage determined by equilibrium

Rate of β-H elimination from RCH₂O(ads): CH₃O reacts slowest

Xu, B., Madix, R.J. & Friend, C.M. JACS (2010).

From UHV to 1 atm Pressure: Catalytic Performance of npAu vs O/Au(111) similar even for complex envronments

B. Xu et al. JACS 2010, 132, 16571; B. K. Min et al. J Phys Chem B 2006, 110, 19833; Unpublished work

Reactant binding determines competition for reaction sites

Relative surface concentration of intermediates determined by equilibrium:

$$K = \frac{\left[CH_3OH\right]\left[C_2H_5O\right]}{\left[CH_3O\right]\left[C_2H_5OH\right]} = 8$$

Challenge for theory: Can competitive binding be predicted?

Xu, B., Madix, R.J. & Friend, C.M. JACS (2010).

van der Waal Interactions must be included to predict relative binding on Au

Adsorbate	E _b (eV) PBE	E _b (eV) PBE+ vdW	Difference due to vdW (eV)
CH₃O	1.15	1.29	0.14
CF ₃ CH ₂ O	1.11	1.41	0.30
CH₃CH₂O	1.38	1.64	0.28
1-CH ₃ (CH ₂) ₃ O	1.33	1.80	0.47

JACS (2014), Siler, Rodriguez-Reyes, Madix, *Liu, and Tkatchenko, FHI*

Binding energy scale established experimentally: Theory ongoing

Gas Phase Acidity*

(kJ/mol)

 1597 ± 6

A		Butanoate	1451 ±8
Acetate Formate Benzyl a Butoxy Ethoxy	Trifluoro acetate	1351 ±12	
	Acetate	1456 ±9	
	Formate	1445 ±9	
	Benzyl alkoxy	1548 ±8	
	Butoxy	1570 ±8	
	Ethoxy	1580 ± 8	
	Trifluoro ethoxy	1513 ±10	
		Acetylide	1580 ±20

Conjugate Base

Methoxy

Scaling relationships must go beyond simple atom-surface bond energies—roles of weak interactions & surface reconstructions must be evaluated

Rodriguez-Reyes, Siler, Liu, Tkatchenko, Friend, Madix, JACS (2014)

Increasing surface stability

Fundamental studies provide understanding of catalysis

- O_{ads} is the reactive site for initiation of alcohol oxidation on Au (and Ag)
- Mechanism is determined using spectroscopy and modeled by DFT
- Van der Waal's interactions are key factor in determining selectivity in complex environments
- Fundamental studies guide reaction design

Photochemical oxidation of organics on TiO₂

Titania is a catalyst and photocatalyst

Titania is a catalyst support material

Dye Sensitized Solar Cells

Catalyst selection: Match energetics of reaction to band gap

Thermondynamic considerations only—does not account for mechanism

K. Maeda, K. Domen, J. Phys. Chem. Lett. 2010, 1, 2655-2661.

Methanol reacts with O adatoms to form methoxy on r-TiO₂(110)

Methoxy—key intermediate—is formed thermally via reaction with O adatoms

Pure layer of methoxy created at RT—no residual O_{ad}

K. Phillips, S. Jensen, M. Baron, S. Li, C. Friend, JACS, 2013 ASAP

Schematic of valence structure including adsorbed methoxy

Excitation of electronhole pair will also involve molecular states

Going beyond thermodynamic arguments: Photooxidation of methanol to formaldehyde

Formaldehyde is primary photoproduct

Henderson, etal. dx.doi.org/10.1021/jz201242k | J. Phys. Chem. Lett. 2011.

Theoretical treatment of photo-oxidation using TDFT Collaboration with Tim Kaxiras, Grigory Koselov, Dmitry Vinichenko, and George Tritsaris

Overall Trajectory

Time evolution of Bond distances – rearrangement of electron density

Comparison of excited to ground state reaction path

Energetics – almost strictly downhill on excited state PES; strongly uphill for ground state

Summary

- Molecular structure and reaction mechanisms are important in determining photo-reaction pathways
- Composition (defect) control is important to photochemical efficiency and selectivity
- Treatment of time evolution of excited states will provide better insight into mechanisms

Acknowledgements

Gold:

T. Baker

M. Bauemer

(Bremen)

J. Biener (LLNL)

M. Biener (LLNL)

J. Haubrich

E. Kaxiras

X. Liu

R. Madix

M. Personick

M. Schmid

C. Siler

K. Stowers

L-C. Wang

A. Wittstock

(Bremen)

B.-J. Xu

B. Zugic

Oxides:

K. Al-Shamery

M. Baron

L. Benz

P. Clawin

Till Cremer

J. Haubrich

S. Jensen

E. Kaxiras

G. Koselov

Beth Landis

K. R. Phillips

G. Tritsaris

D. Vinichencko

\$\$=NSF-CHE and NSF-DMR

Backup slides

Methodology: Self Consistent Field (SCF) Theory

$$\rho(r) = \sum n \uparrow f \ln |\phi \ln (r)| / 2$$

DFT:

$$H \downarrow eff [\rho] \phi \downarrow n (r) \equiv (T + V \downarrow ne + V \downarrow Coul [\rho] + V \downarrow xc [\rho]) \phi \downarrow n (r) = \epsilon \downarrow n \phi \downarrow n (r)$$

$$\Phi \downarrow ground = A/(\phi \downarrow 1) \uparrow 2 ... (\phi \downarrow N \downarrow occ) \uparrow 2/$$

$$\Phi \ell exc = \mathcal{A}/(\phi \ell 1 \ell^{\dagger}) \ell 2 \dots (\phi \ell N \ell occ - 1 \ell^{\dagger}) \ell 2 (\phi \ell N \ell occ \ell^{\dagger}) \ell 1 (\phi \ell N \ell occ + 1 \ell^{\dagger}) \ell 1$$

Primes mean orbital relaxation!

 $\Phi \downarrow exc \uparrow 1 \rightarrow \rho \downarrow exc \uparrow 1 \rightarrow H \uparrow 1 \downarrow exc \rightarrow \Phi \downarrow exc \uparrow 2 \rightarrow ... self-consistency$

Method: Ehrenfest dynamics

Electron dynamics:

$$i\partial\phi\downarrow n(t)/\partial t = H\downarrow exc[\rho](t)\phi\downarrow n(t)$$

Ion dynamics:

$$M\downarrow J \partial \uparrow 2 R \downarrow J / \partial t \uparrow 2 = \langle F \downarrow J \rangle = - \nabla \downarrow R \downarrow J V \downarrow K S \uparrow J [\rho(t)](R),$$

All equations discretized in 10 attoseconds time steps